

Daya Bay

Steve Kettell BNL

- 1) Motivation
- 2) Daya Bay Experiment
- 3) Daya Bay Project
- 4) BNL involvement

The Last Mixing Angle: θ₁₃

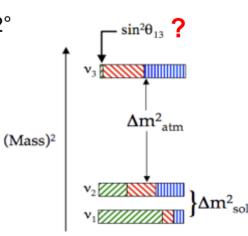
U_{MNSP} Matrix Maki, Nakagawa, Sakata, Pontecorvo

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$
?

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$

atmospheric, K2K

reactor and accelerator


SNO, solar SK, KamLAND

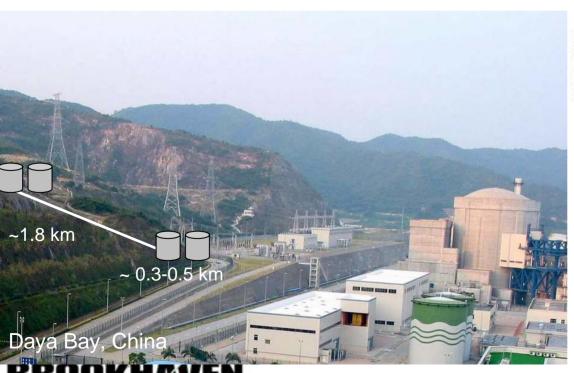
0νββ

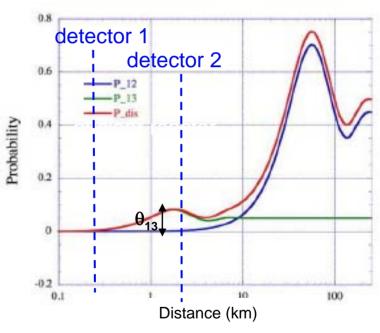
$$\theta_{23} = \sim 45^{\circ}$$

$$\theta_{13} = ?$$

What is v_e fraction of v_3 ? Is there $\mu-\tau$ symmetry in neutrino mixing? U_{e3} is the gateway to leptonic CP violation.

Why BNL?



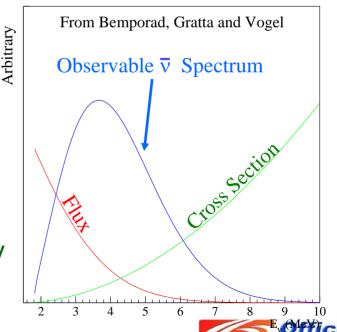

- The Physics is compelling! and a critical step to PP
- BNL provides a strong National Laboratory presence to assure the success of the experiment.
- BNL has a rich tradition in ν physics: in both the Physics and Chemistry departments
- BNL Chemistry has been involved in liquid scintillator research for Daya Bay for 3 years
- This experiment is a good match to the existing Physics
 Department effort on MINOS and future long-baseline
 experiment to measure CP violation in the neutrino sector.

Measuring sin²2θ₁₃ with Reactor Neutrinos

$$P_{ee} \approx \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{yy}} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_{yy}} \right)$$

- No dependence on δ_{CP} or matter effects
- · Cost effective
- · Rapid deployment possible

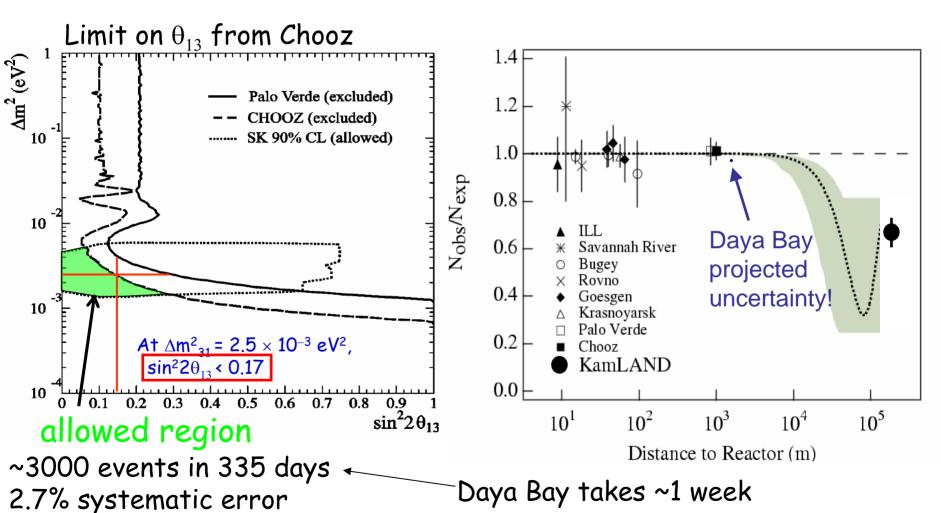
Detection of antineutrinos in liquid scintillator



inverse β-decay in Gd-doped liquid scintillator:

- $v_e + p \rightarrow e^+ + n \text{ (prompt)}$ $0.3b \rightarrow + p \rightarrow D + \gamma(2.2 \text{ MeV}) \text{ (delayed)}$ $50,000b \rightarrow + Gd \rightarrow Gd^*$
 - \rightarrow Gd + γ 's(8 MeV) (delayed)

- Time- and energy-tagged signal is a good tool to suppress background events.
- Energy of $\bar{\nu}_e$ is given by:


$$E_{\bar{\nu}} \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \; MeV$$
 10-40 keV

Current Knowledge of θ_{13}

BROOKHAVEN

without near detectors

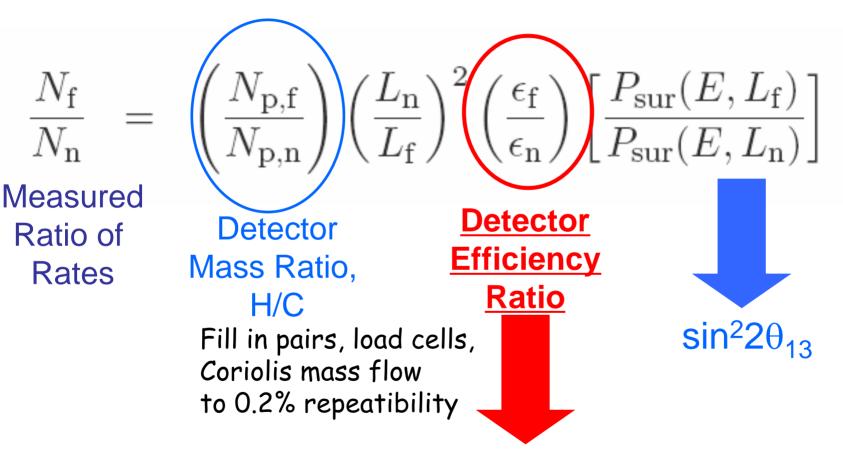
DOE HEP Review: Steve Kettell 6

Sensitivity to $\sin^2 2\theta_{13} \le 0.01$

High statistics:

- Powerful reactor cores
- Large target mass

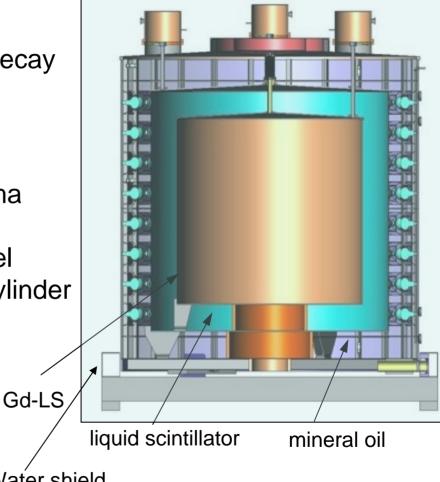
Control of systematic errors:


- Utilize multiple detectors at different baselines (near and far)
 - → measure RATIOS
- Make detectors as nearly IDENTICAL as possible
- Careful and thorough calibration and monitoring of each detector
- Optimize baseline for best sensitivity and small residual reactorrelated errors
- Possible to interchange detectors to further cancel most detector systematics

Measure <u>ratio</u> of detector rates:

Requirement: know relative efficiencies, each to 0.2%.

Antineutrino Detector

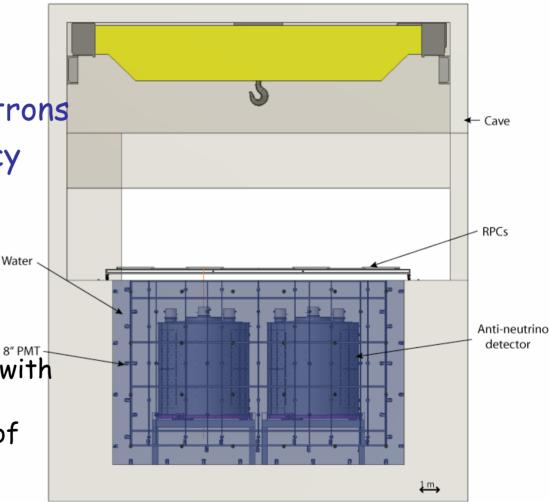


• Antineutrinos are detected via inverse β-decay in Gd-doped liquid scintillator (LS)

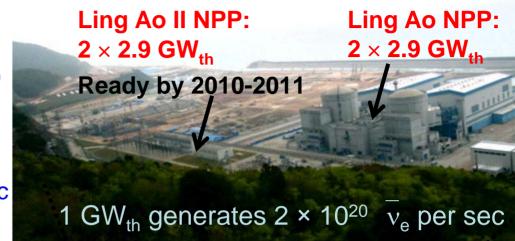
Description:

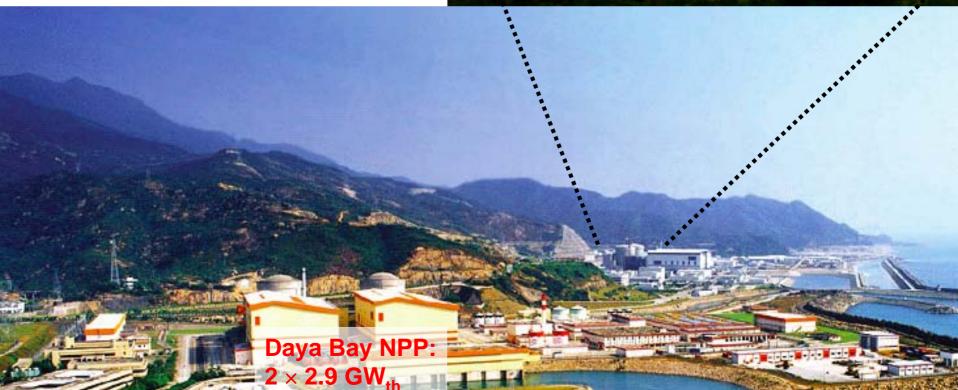
- 3 zones: Gd-LS target (20 tons), LS gamma catcher, oil buffer
- 2 nested acrylic vessels, 1 stainless vessel
- 192 PMT's on circumference of 5m×5m cylinder
- reflectors on endplates of cylinder
- energy resolution:

$$\frac{\sigma}{E} \sim \frac{11.6\%}{\sqrt{E(\text{MeV})}}, \quad \sigma_{\text{vertex}} = 12.5 \text{cm}$$


Water shield

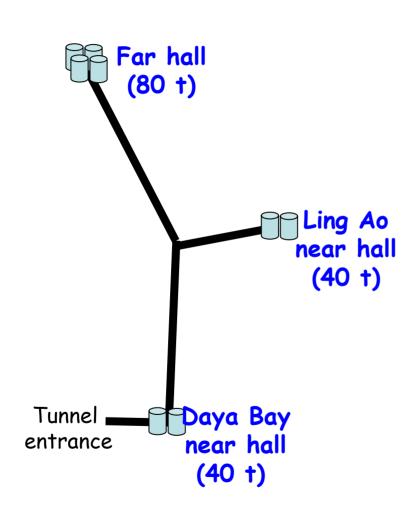
Muon System

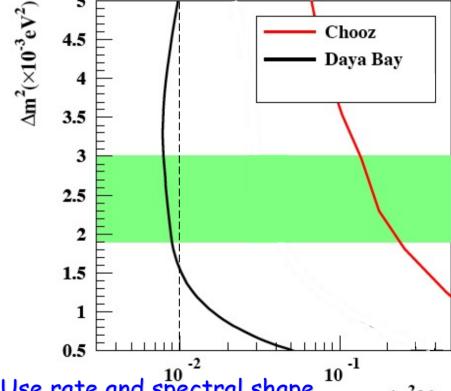

- Muon Veto
- suppress spallation neutrons
- require 99.5% efficiency
- Water shield (2.5m)
 - rock neutrons
 - radioactivity
 - ·Water Cherenkov detectors with
 - 963 PMTs in 3 sites
 - •756 RPC chambers over top of 3 pools (6048 readout strips)



Daya Bay Nuclear Power Facilities 13

- World's 12th most powerful (11.6 GW_{th})
- 5th most powerful by 2011 (17.4 GW_{th})
- Adjacent to mountains, facilitates tunnels to underground labs with sufficient overburden to suppress cosmic rays (flexibility to move detectors)





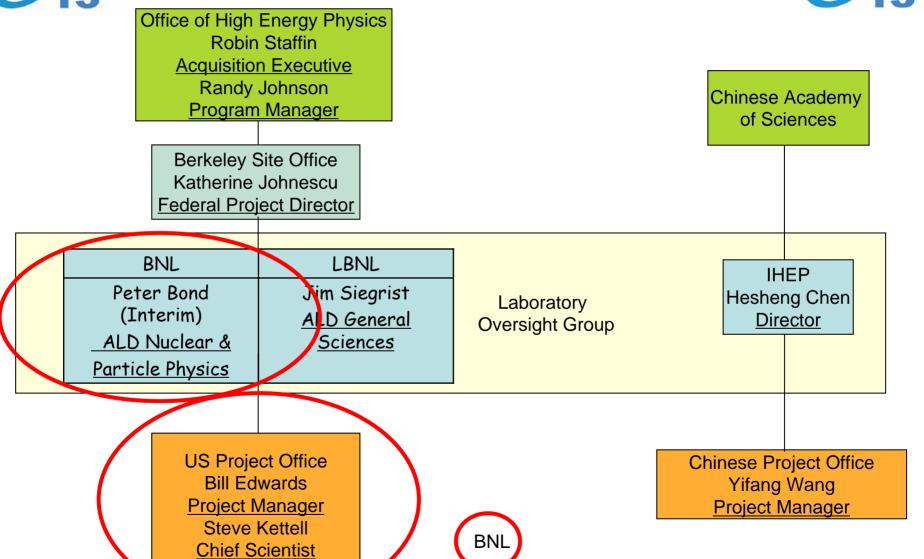
Sensitivity

- Use rate and spectral shape
- input relative detector systematic error of 0.2%

 $\sin^2 2\theta_{13}$

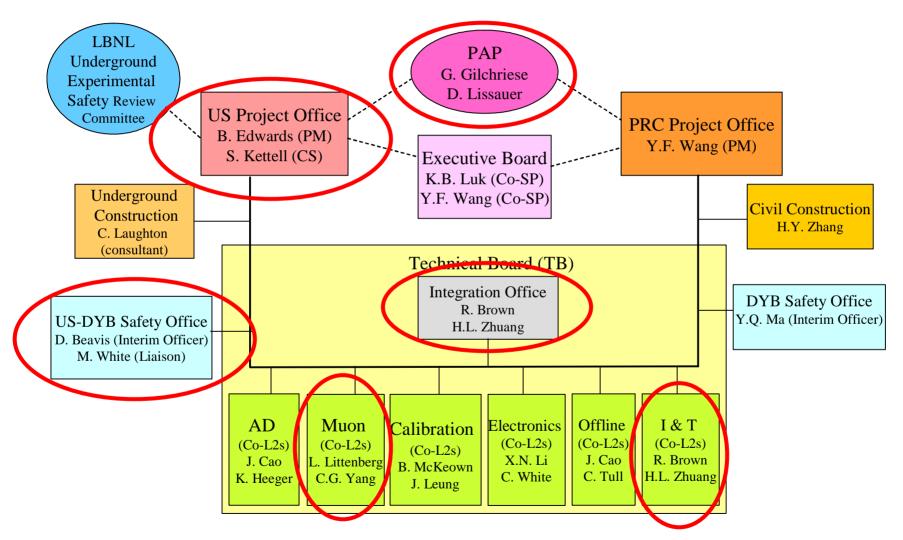
Daya Bay Project Status

- · CD-0: 11/2005
- US Daya Bay R&D proposal 1/2006
- BNL formally joins collaboration 2/2006
- Project team assembly begins 2/2006
- NuSAG endorses DB goal and DB expt. as one option 2/2006
- · DOE Daya Bay Briefing 4/2006, R&D funds approved
- Successful Physics Review 10/16-17/06
- P5 Roadmap: Recommends Daya Bay 10/2006
- Successful CD-1 Review 4/10-11/07
- Start of Civil construction 7/2007
- CD-2 Baseline planned for 10/2007
- · CD-3b Construction start planned for Spring 2008
- · CD-4b start of full operations fall 2010



NATIONAL LABORATORY 4/17/2007

Project/DOE Organization



15

Internal Project Organization

16

US Cost Estimate

Daya Bay Project Cost Estimate, FY07 US\$

WBS	Description	Base	% Cont	Contingency	Total
1 1	Antineutrino Detectors	8.455.791	36%	3,049,858	11,505.6
1 2	Muon System	3,700,295	22%	806,326	4,506,6
1 3	Calibration & Monitoring	1,939,967	22%	428,733	2,368,7
1 4	Electronics & Online	212,876	12%	26,561	239,4
1 5	Offline	1,364,574	19%	252,969	1,617,5
1 6	Conventional Construction & Equip (PRC)	-			
1 7	Installation Planning & Support	1,961,186	19%	374,018	2,335,2
1 8	System Integration	1.027.593	20%	203,363	1,230,9
1 9	Project Management	1,766,037	8%	132,975	1,899.0
Management Reserve (TEC)		-		853,692	853,6
Subtotal (TEC)		20,428,318	30.0%	6,128,495	26,556,8
1 10	Prelim Design & Proj Development (OPC)	3,570,809	5%	178,540	3,749,3
Total Project Costs (TPC)		23,999,128	26.3%	6,307,036	30,306,16

=> Peoples Republic of China Project Scope

\$31.6M at-year

Major Milestone Summary

•	Initial Chinese Funding Secured	Apr&Aug 06
•	CD-1 Review passed	Apr 07
•	Start Tunnel Construction	July 07
•	CD-2/3a Approval	Nov 07
•	PMT Contract Let	Nov 07
•	CD-3b Approval	Mar 08
•	AD Hardware in SAB (starting assembly)	Jul 08
•	Beneficial Occupancy of DB Near Hall	Sept 08
•	1st AD in Filling Hall	Nov-Dec 08
•	DB Near Site Ready to take data	May 09
•	Beneficial Occupancy of LA Near & Far Hall	Apr & Jul 09
•	CD-4a Approval	Nov 09
•	All Near & Far Sites Ready to Take Data	Apr 10
•	CD-4b Approval	Sept 10

19

Office of

BNL DB Activity in 2006

- Joined collaboration in February 2006
- Led (co-led) task forces:
 - Simulations: David Jaffe
 - Liquid Scintillator: Dick Hahn
 - Muon Veto: Laurie Littenberg
 - Antineutrino Detector: Steve Kettell

- BNL hosted the Director's Review.
- Proposal (DOE Physics Review):
 - leadership in drafting the Trigger/DAQ section
 - leadership of the Muon System section.
 - lead role in the coordination and drafting of the Installation, Operations and Project Development chapters and LS section.
 - lead role in editing and coordinating the Proposal.
- · Coordination of the US effort on the muon system and LS.
- · Coordination of the US design integration effort.
- · Lead role in drafting the successful US FY06 R&D proposal.

20

Activity at BNL in 2007

- BNL scientists have key roles in the Daya Bay Project:
 - Chief Scientist: Steve Kettell
 - Chief Engineer: Ralph Brown
 - Muon System L2 Manager: Laurie Littenberg
 - Installation and Integration L2 Managers: Ralph Brown
 - Liquid Scintillator L3 Manager: Minfang Yeh
 - Analysis and Simulation Software L3 Manager: David Jaffe
 - Co-leader of International Simulation effort: David Jaffe
 - Co-leader of International Liquid Scintillator Task Force: Dick Hahn

· CDR:

- Chair of the Editorial Board and Editor-in-Chief: Steve Kettell
- Members of the Editorial Board: David Jaffe and Laurie Littenberg
- Technical advisor to the Editorial Board: Brett Viren
- Lead Authors of 8 chapters: Steve Kettell, Laurie Littenberg, Ralph Brown.
- Review committee: D. Jaffe, M. Bishai, B. Viren, R. Brown, L. Littenberg, D. Hahn.
- BNL is playing a lead role, along with LBNL and IHEP in the engineering design and integration, including the Civil Design specification.
- · BNL is leading the effort to develop an installation plan
- · BNL is playing a lead role in developing a Daya Bay safety plan.

Daya Bay staff at BNL

BNL Scientific Staff:

- Physics: 8 people (1 postdoc on LDRD, 1 engineer on DB R&D, 6 scientists on HEP base). Two more scientists involved and planning to join collaboration (supported on NP base). Two additional scientists with minimal involvement (one retired and one on HEP base).
- Chemistry: 3 people (2 scientists almost supported on base NP, one postdoc supported on LDRD)
- CAD: 1 person (scientist supported on NP base)
- Total count of ~14

· FTE count:

- FY07: 6.4 (3.4 Physics, 2.7 Chemistry, 0.3 CAD. Includes 2 LDRD supported postdocs)
- FY08R: 7.8 (4.7 Physics assuming postdoc is replaced, 2.7 Chemistry assuming LDRD extension, 0.5 CAD) May add ~1.2 FTE in Physics supported on NP base.

Gd Liquid Scintillator (WBS 1.1.3)

(Chemistry Department)

Gd-LS: A joint **US-PRC-Russia** activity

Item	Requirement & Justification
long-term chemical stability of Gd-LS	> 3-5 years
high optical transparency for oil, LS and Gd-LS	> 10 m
high photon production for Gd-LS	
ultra-low impurity content	$< 10^{-12} \text{ g/g}$
C/H ratio determination	<0.1%
homogeneous distribution of Gd in LS	- thoroughly dissolving and mixing Gd in LS
chemical identity of oil, LS and Gd-LS	- single-batch liquid storage for each BNL Solvent Extraction
between each detector module	phase before filling
♦ 1.2% Gd in PC	

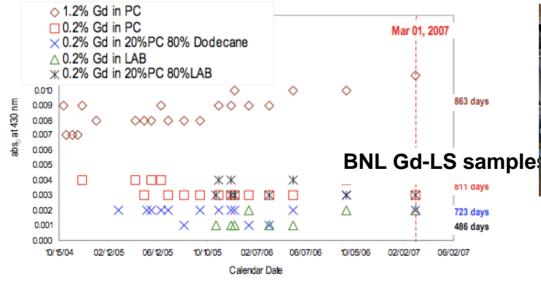
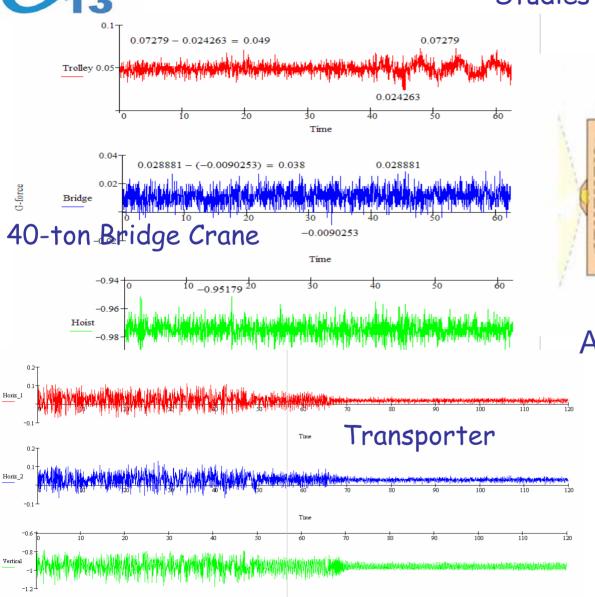
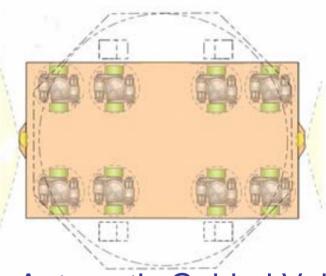


Fig. 6.23. The UV absorption values of BNL Gd-LS samples at 430 nm as a function of time

NATIONAL LABORATORY 4/17/2007


DOE HEP Review: S



Transporter/Cranes (WBS 1.7)

Studies of acceleration

Automatic Guided Vehicle

Summary

- The measurement of θ_{13} at Daya Bay is a key part of the US HEP program
- This measurement is important in its own right and to plan future experiments to search for CP violation in neutrinos
 - \rightarrow All sites ready to take data 4/10. Measurement by ~2014
- BNL is playing a key role in this experiment and this Project
 - 7 scientists and 1 engineer from Physics
 - 3 scientists from Chemistry
 - 1 scientist from C-AD
 - additional admin and technical support
- Effort has grown from E949/RSVP transfer and BNL LDRD support (plus long term Chemistry involvement - 2004)
- Concerns:
 - There is concern whether we can get a 3-year Project funding profile
 - Concern over NP base support of LS effort
 - · Need 1 postdoc (and travel) to replace existing staff!

